The Monge-ampère Equation and Its Link to Optimal Transportation
نویسنده
چکیده
We survey old and new regularity theory for the Monge-Ampère equation, show its connection to optimal transportation, and describe the regularity properties of a general class of Monge-Ampère type equations arising in that context.
منابع مشابه
Second Order Stability for the Monge-ampère Equation and Strong Sobolev Convergence of Optimal Transport Maps
The aim of this note is to show that Alexandrov solutions of the Monge-Ampère equation, with right hand side bounded away from zero and infinity, converge strongly in W 2,1 loc if their right hand side converge strongly in Lloc. As a corollary we deduce strong W 1,1 loc stability of optimal transport maps.
متن کاملC regularity of solutions of the Monge-Ampère equation for optimal transport in dimension two
We prove C regularity of c-convex weak Alexandrov solutions of a Monge-Ampère type equation in dimension two, assuming only a bound from above on the Monge-Ampère measure. The Monge-Ampère equation involved arises in the optimal transport problem. Our result holds true under a natural condition on the cost function, namely non-negative cost-sectional curvature, a condition introduced in [7], th...
متن کاملOn Monge–Ampère type equations arising in optimal transportation problems
On Monge-Ampère Type Equations Arising In Optimal Transportation Problems Truyen Van Nguyen DOCTOR OF PHILOSOPHY Temple University, May, 2005 Professor Cristian E. Gutiérrez, Chair In this dissertation we study Monge-Ampère type equations arising in optimal transportation problems. We introduce notions of weak solutions, and prove the stability of solutions, the comparison principle and the ana...
متن کاملNumerical solution of the second boundary value problem for the Elliptic Monge-Ampère equation
This paper introduces a numerical method for the solution of the nonlinear elliptic Monge-Ampère equation. The boundary conditions correspond to the optimal transportation of measures supported on two domains, where one of these sets is convex. The new challenge is implementing the boundary conditions, which are implicit and non-local. These boundary conditions are reformulated as a nonlinear H...
متن کاملC Penalty Methods for the Fully Nonlinear Monge-ampère Equation
In this paper, we develop and analyze C0 penalty methods for the fully nonlinear Monge-Ampère equation det(D2u) = f in two dimensions. The key idea in designing our methods is to build discretizations such that the resulting discrete linearizations are symmetric, stable, and consistent with the continuous linearization. We are then able to show the well-posedness of the penalty method as well a...
متن کامل